El mayor mapa genético del cáncer
Célula de cáncer de mama. / age fotostock
Ningún oncólogo cree a estas alturas que el equivalente moderno del doctor Fleming vaya a descubrir la penicilina contra el cáncer, algún tipo de fármaco o procedimiento médico de aplicación general que suponga el verdadero vuelco en el tratamiento antitumoral, que convierta al matarife en una enfermedad curable o, al menos, crónica y controlable. No va a haber una penicilina del cáncer, y ya nadie la está buscando.
Pero la mitad de los cánceres ya se curan, como repite sin cesar cualquier oncólogo. Y la guerra contra la otra mitad se está librando ahora mismo en dos frentes esenciales. Uno se refiere al tema eterno del diagnóstico precoz, que pese a sus orígenes prehistóricos no ha perdido un ápice de importancia en nuestros días. Y el otro es la genómica, el nuevo cuerpo de conceptos y tecnologías del ADN que está revolucionando la biología en su conjunto, y la investigación del cáncer en particular.
Con ser una disciplina nueva, la genómica del cáncer va cumpliendo un decenio y ha vertido ya un Iguazú de nuevos conocimientos sobre la oncología, siempre sedienta de ellos. Los primeros esfuerzos en genómica del cáncer se centraron en las mutaciones heredadas que confieren una alta propensión a la enfermedad. Este tipo de alteraciones heredadas (o mutaciones de la línea germinal, en la jerga) son al fin y al cabo la gran especialidad de la genética desde sus orígenes en el huerto conventual de Gregor Mendel.
Pero el gran avance de las técnicas de secuenciación de ADN —y sobre todo su acelerado abaratamiento— ha permitido ahora catalogar las mutaciones somáticas (no heredadas, sino surgidas en el cuerpo del adulto) que dirigen el crecimiento de los principales tipos de tumores. Los grandes cerebros del sector dan cuenta del estado de la cuestión en cuatro artículos de la revista
Science y dos números especiales de su subsidiaria
Science Signalling. Los datos revelan un filón de nuevas vías abiertas para el tratamiento de los principales tipos de tumores.
Uno de los grandes problemas de la lucha antitumoral, se dice a menudo, es que el cáncer no es una enfermedad, sino 200 distintas. Esta es una de las razones de que nadie espere la píldora del doctor Fleming, y el alud de datos de la genómica moderna ha empeorado aún más el cuadro. La primera impresión que ofreció ese atracón de secuencias genéticas (gaatgtta…) fue que no solo había 200 enfermedades distintas, sino que encima cada enfermo es un mundo.
Cuatro trabajos en 'Science' revelan un filón de vías abiertas
Pero los conceptos generales han empezado a emerger de esas pormenorizadas espesuras, y con ellos las nuevas estrategias para el tratamiento. La historia de la ciencia muestra que el entendimiento es el prólogo de la esperanza.
"Hace 10 años", dicen Bert Vogelstein y sus colegas del Instituto Médico Howard Hughes en Baltimore, "la idea de que todos los genes alterados en el cáncer pudieran ser identificados con la resolución de un par de bases habría parecido ciencia ficción". Lo del "par de bases" no es una concesión de Vogelstein a la indeterminación literaria. Es la mayor precisión que se puede alcanzar en biología: detectar, entre los 3.000 millones de letras del ADN que contiene cada una de nuestras células, una errata en una sola letra que tiene efectos cancerosos.
Ese análisis de amplitud genómica ahora no es solo posible, sino incluso una mera "rutina", en palabras de Vogelstein, en los laboratorios avanzados de investigación oncológica que salpican el planeta. Vogelstein, premio Príncipe de Asturias en 2004 por sus contribuciones a la genética del cáncer, es también uno de los grandes pioneros de la genómica del cáncer, o aplicación de las nuevas tecnologías de secuenciación (lectura) del ADN a la lucha contra esa enfermedad (o esas 200 enfermedades distintas). Quizá no sea casual que su primera licenciatura no la obtuviera en Biología, sino en Matemáticas.
El abaratamiento de las lecturas de ADN ha facilitado los progresos
Por poco científico que suene, los costes han sido la cuestión capital para este progreso. Cuando se empezaron a estudiar los primeros genomas del cáncer —que fueron los de colon y mama, hace unos 10 años—, secuenciar un tumor de cada paciente costaba unos 100.000 dólares (78.000 euros al cambio actual); el coste ronda ahora los 1.000 dólares (780 euros).
Como consecuencia, las investigaciones que presentan de una tacada los genomas de 100 tumores de cierto tipo (mama, piel u otros tejidos) "se han convertido en la norma", según los genetistas del Howard Hughes. El diluvio de datos es abrumador y no tiene el más remoto precedente en la investigación oncológica. Los investigadores esperan que ese salto cuantitativo ascienda a cualitativo en los próximos años. Ya lo es para el conocimiento del cáncer y el objetivo es que pronto lo sea también para el tratamiento.
La genómica ha descubierto que los principales cánceres humanos se deben a la acumulación de unas pocas mutaciones —entre dos y ocho— que se van sumando serialmente a lo largo de 20 o 30 años. Alguna de esas mutaciones puede venir puesta de nacimiento, confiriendo a esa persona una alta propensión a desarrollar uno u otro tipo de tumor, o incluso cualquier tipo de tumor.
Pero lo habitual es que las mutaciones surjan a lo largo de la vida del individuo, y en algunos cánceres la causa no puede estar más clara. Es el caso del humo del tabaco para el cáncer de pulmón, o el de la radiación ultravioleta de la luz solar para el cáncer de piel. Estos dos cánceres, de hecho, son algunos de los que más mutaciones exhiben de todos los examinados por la genómica. A lo largo de los 20 o 30 años que tardan en desarrollarse, estos tumores se benefician grandemente de la persistencia en los hábitos fumadores o solariegos de sus portadores.
La mayoría de los cánceres dependen de unas pocas mutaciones
Esas pocas mutaciones (de dos a ocho) que se acumulan durante dos décadas son cancerosas en un sentido muy explícito: cada una de ellas, por sí misma, incrementa el ritmo de división celular (o reduce el de muerte celular, o ambas). La célula que sufre la mutación adquiere así una ventaja competitiva sobre sus células vecinas. Aun cuando la ventaja sea pequeña en cada generación celular, su efecto acumulativo a lo largo de los años suele producir un clon de células mutadas en algún órgano del paciente.
Una peca es un ejemplo intuitivo de uno de estos clones (recuerden que la piel es un órgano), y también ilustra el hecho de que una sola mutación no suele ser maligna. Lo que sí genera es un campo amplificado de células sobre las que sembrar la siguiente mutación. En estas condiciones, no hace falta postular ningún mecanismo especial para la acumulación de mutaciones en una sola célula. El viejo y venerable azar se basta por sí solo para acabar complicando las cosas.
Por desgracia —y como cabía esperar, por otro lado— esas dos u ocho mutaciones críticas no son las mismas en todos los cánceres. Con algunas excepciones, tienden a ser específicas de cada tipo de tumor. Esta es la razón de que no haya ocho genes del cáncer, sino 140. Son lo que los investigadores llaman genes conductores, genes cuyas alteraciones (mutaciones) confieren a la célula que las sufre una ventaja selectiva en su competitivo vecindario celular, y que por tanto dirigen o conducen el desarrollo del tumor.
El término conductores sirve para distinguirlos de la vasta mayoría de genes que aparecen mutados en cualquier tumor, que son meros pasajeros: alteraciones oportunistas que se ven amplificadas en el cuerpo por el mero hecho de que ocurren en el mismo genoma —en el mismo autobús— que las mutaciones en los genes conductores.
La clave de los tumores está en una docena de sistemas biológicos
E incluso esa cifra algo abultada de 140 genes conductores esconde una simplicidad subyacente que permitirá en el futuro inmediato, si no lo está haciendo ya, concentrar los focos en las tácticas farmacológicas más prometedoras a corto plazo. Porque esos 140 genes son componentes de solo 12 sistemas biológicos muy bien caracterizados en las células humanas.
Son los sistemas de transmisión (transducción de señal, en la jerga) que comunican el entorno de la célula —qué hormonas circulan por la sangre, o qué andan haciendo las células vecinas en ese momento— con su sede central de inteligencia: el núcleo celular donde el genoma reside, se replica, brega con el estrés y ocasionalmente muta.
En un organismo multicelular como el lector, es este avanzado sistema de comunicaciones entre las partes de una célula el que determina su destino: cuándo debe dividirse o morir, si se debe convertir en una neurona o una célula de la piel o, por el contrario, preservar su naturaleza inmadura de célula madre para seguirse dividiendo sin comprometerse a un destino o a otro.
En ocasiones, si ha de dividirse más deprisa que las demás. Ahí está la esencia molecular del cáncer, y posiblemente —esperan los genetistas— su talón de Aquiles.
De este modo, la genómica, que empezó complicando las cosas más de lo que ya lo estaban en la investigación del cáncer, ha empezado a pagar su deuda con la simplicidad, o con la esperanza de que haya algunos principios generales bajo la espesura de lo prolijo. Pese a que cada tumor, incluso en comparación con los de su mismo tipo y subtipo, sea un mundo con un paisaje genético único e irrepetible —y en ese sentido un producto de la historia—, los sistemas de comunicación intracelular afectados son similares en distintos tumores, e incluso entre distintos tipos de tumor.
"En el futuro", dicen Vogelstein y sus colegas, "el mejor plan de gestión para un paciente con cáncer estará basado en un análisis del genoma de su línea germinal (el que ha heredado de sus padres) y el genoma de su tumor". Y el futuro empieza hoy.
Mensaje para investigadores
EMILIO DE BENITO
El mapa de las mutaciones asociadas a cada cáncer da una muestra de su extraordinaria variabilidad. No es solo que el tumor de mama no tiene nada que ver con una leucemia. Es que dentro de cada tipo hay varios subtipos. Y cada uno de estos necesita una terapia específica. Esto llega al extremo en uno de los más estudiados por ser el más frecuente en hombres, el de pulmón. Ya los propios autores de los trabajos que publica Science distinguen entre los tumores de células pequeñas y los de no pequeñas.
Estas diferencias son cruciales en el diagnóstico y el tratamiento. Los oncólogos médicos ya defienden abiertamente que ante un diagnóstico de cáncer, lo primero que habría que hacer sería un estudio genómico del paciente.
¿Es caro? Según se mire. A menos de 800 euros por persona puede resultar mucho más barato que una cirugía, una quimioterapia o un tratamiento de última generación a base de fármacos de origen biológico. Y tiene una doble ventaja: al sacar la huella dactilar del cáncer, se sabe exactamente qué tratamientos hay que suministrar. Es lo que se denomina terapia personalizada, ya que depende de los genes de cada uno (aunque luego, en la práctica, lo que se haga sea meter a cada paciente en un grupo con las mismas mutaciones). Esto es bueno para el paciente, que se va a beneficiar de lo más adecuado. Pero esto, además, es bueno también para el sistema sanitario. No tiene sentido gastar dinero (y hablamos de miles de euros) en dar una quimioterapia oral a una persona cuyos genes están preparados para eludir su efecto. Mucho menos cuando al hacer esto muchas veces hay que acompañar la medicación de otras pastillas para los efectos secundarios (náuseas, anemia, malestar). Y eso es más gasto.
Los trabajos publicados en Science tienen otra ventaja. Al establecer que un puñado de mutaciones intervienen en la mayoría de los cánceres, las sitúan en la diana de los investigadores. Es por donde conviene empezar.